3.2.67 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^4 \, dx\) [167]

Optimal. Leaf size=173 \[ \frac {128 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {904 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{231 d}+\frac {904 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {128 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {150 a^4 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{77 d}+\frac {8 a^4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {2 a^4 \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{11 d} \]

[Out]

128/15*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+904/231*a^4
*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+128/45*a^4*cos(d*x+c)
^(3/2)*sin(d*x+c)/d+150/77*a^4*cos(d*x+c)^(5/2)*sin(d*x+c)/d+8/9*a^4*cos(d*x+c)^(7/2)*sin(d*x+c)/d+2/11*a^4*co
s(d*x+c)^(9/2)*sin(d*x+c)/d+904/231*a^4*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 173, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2836, 2715, 2720, 2719} \begin {gather*} \frac {904 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{231 d}+\frac {128 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a^4 \sin (c+d x) \cos ^{\frac {9}{2}}(c+d x)}{11 d}+\frac {8 a^4 \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}+\frac {150 a^4 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{77 d}+\frac {128 a^4 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {904 a^4 \sin (c+d x) \sqrt {\cos (c+d x)}}{231 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^4,x]

[Out]

(128*a^4*EllipticE[(c + d*x)/2, 2])/(15*d) + (904*a^4*EllipticF[(c + d*x)/2, 2])/(231*d) + (904*a^4*Sqrt[Cos[c
 + d*x]]*Sin[c + d*x])/(231*d) + (128*a^4*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (150*a^4*Cos[c + d*x]^(5/2
)*Sin[c + d*x])/(77*d) + (8*a^4*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d) + (2*a^4*Cos[c + d*x]^(9/2)*Sin[c + d*x
])/(11*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^4 \, dx &=\int \left (a^4 \cos ^{\frac {3}{2}}(c+d x)+4 a^4 \cos ^{\frac {5}{2}}(c+d x)+6 a^4 \cos ^{\frac {7}{2}}(c+d x)+4 a^4 \cos ^{\frac {9}{2}}(c+d x)+a^4 \cos ^{\frac {11}{2}}(c+d x)\right ) \, dx\\ &=a^4 \int \cos ^{\frac {3}{2}}(c+d x) \, dx+a^4 \int \cos ^{\frac {11}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \cos ^{\frac {5}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \cos ^{\frac {9}{2}}(c+d x) \, dx+\left (6 a^4\right ) \int \cos ^{\frac {7}{2}}(c+d x) \, dx\\ &=\frac {2 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {8 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {12 a^4 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {8 a^4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {2 a^4 \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{11 d}+\frac {1}{3} a^4 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{11} \left (9 a^4\right ) \int \cos ^{\frac {7}{2}}(c+d x) \, dx+\frac {1}{5} \left (12 a^4\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{9} \left (28 a^4\right ) \int \cos ^{\frac {5}{2}}(c+d x) \, dx+\frac {1}{7} \left (30 a^4\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {24 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {74 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {128 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {150 a^4 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{77 d}+\frac {8 a^4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {2 a^4 \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{11 d}+\frac {1}{77} \left (45 a^4\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{7} \left (10 a^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{15} \left (28 a^4\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {128 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {74 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {904 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {128 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {150 a^4 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{77 d}+\frac {8 a^4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {2 a^4 \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{11 d}+\frac {1}{77} \left (15 a^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {128 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {904 a^4 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{231 d}+\frac {904 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {128 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {150 a^4 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{77 d}+\frac {8 a^4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {2 a^4 \cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{11 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 4.40, size = 271, normalized size = 1.57 \begin {gather*} \frac {a^4 (1+\cos (c+d x))^4 \sec ^8\left (\frac {1}{2} (c+d x)\right ) \left (-108480 \cos (c+d x) \sqrt {\cos ^2(d x-\text {ArcTan}(\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sin (c)+\cos (c+d x) (-236544 \cot (c)+122610 \sin (c+d x)+45584 \sin (2 (c+d x))+14445 \sin (3 (c+d x))+3080 \sin (4 (c+d x))+315 \sin (5 (c+d x)))+\frac {59136 \sec (c) \left (-2 \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sin (d x+\text {ArcTan}(\tan (c)))+(3 \cos (c-d x-\text {ArcTan}(\tan (c)))+\cos (c+d x+\text {ArcTan}(\tan (c)))) \csc (c) \sqrt {\sin ^2(d x+\text {ArcTan}(\tan (c)))}\right )}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\text {ArcTan}(\tan (c)))}}\right )}{443520 d \sqrt {\cos (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^4,x]

[Out]

(a^4*(1 + Cos[c + d*x])^4*Sec[(c + d*x)/2]^8*(-108480*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[
c]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + Cos
[c + d*x]*(-236544*Cot[c] + 122610*Sin[c + d*x] + 45584*Sin[2*(c + d*x)] + 14445*Sin[3*(c + d*x)] + 3080*Sin[4
*(c + d*x)] + 315*Sin[5*(c + d*x)]) + (59136*Sec[c]*(-2*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTa
n[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]] + (3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])*Cs
c[c]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2])))/(443520*d*Sqrt[C
os[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 273, normalized size = 1.58

method result size
default \(-\frac {8 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (5040 \left (\cos ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5320 \left (\cos ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1740 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+326 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+678 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4465 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1695 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3696 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2001 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3465 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(273\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

-8/3465*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(5040*cos(1/2*d*x+1/2*c)^13-5320*cos(1/2*d
*x+1/2*c)^11+1740*cos(1/2*d*x+1/2*c)^9+326*cos(1/2*d*x+1/2*c)^7+678*cos(1/2*d*x+1/2*c)^5-4465*cos(1/2*d*x+1/2*
c)^3+1695*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
-3696*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+200
1*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1
/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^4*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.15, size = 188, normalized size = 1.09 \begin {gather*} -\frac {2 \, {\left (3390 i \, \sqrt {2} a^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 3390 i \, \sqrt {2} a^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 7392 i \, \sqrt {2} a^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 7392 i \, \sqrt {2} a^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (315 \, a^{4} \cos \left (d x + c\right )^{4} + 1540 \, a^{4} \cos \left (d x + c\right )^{3} + 3375 \, a^{4} \cos \left (d x + c\right )^{2} + 4928 \, a^{4} \cos \left (d x + c\right ) + 6780 \, a^{4}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3465 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

-2/3465*(3390*I*sqrt(2)*a^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 3390*I*sqrt(2)*a^4*wei
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 7392*I*sqrt(2)*a^4*weierstrassZeta(-4, 0, weierstrass
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 7392*I*sqrt(2)*a^4*weierstrassZeta(-4, 0, weierstrassPInvers
e(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (315*a^4*cos(d*x + c)^4 + 1540*a^4*cos(d*x + c)^3 + 3375*a^4*cos(d*
x + c)^2 + 4928*a^4*cos(d*x + c) + 6780*a^4)*sqrt(cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))**4,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3880 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^4,x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^4*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 0.88, size = 221, normalized size = 1.28 \begin {gather*} \frac {2\,a^4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a^4\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}-\frac {8\,a^4\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a^4\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {8\,a^4\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^4\,{\cos \left (c+d\,x\right )}^{13/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {13}{4};\ \frac {17}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{13\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^4,x)

[Out]

(2*a^4*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (2*a^4*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) - (8*a^4*cos(c + d*x
)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (4*a^4*cos(c
+ d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(3*d*(sin(c + d*x)^2)^(1/2)) - (8*a^4*c
os(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2)) -
(2*a^4*cos(c + d*x)^(13/2)*sin(c + d*x)*hypergeom([1/2, 13/4], 17/4, cos(c + d*x)^2))/(13*d*(sin(c + d*x)^2)^(
1/2))

________________________________________________________________________________________